当前位置: 首页 > news >正文

个人做论坛网站有哪些不受限制的万能浏览器

个人做论坛网站有哪些,不受限制的万能浏览器,免费 网站,国外疫情最新消息背景 最大似然估计(Maximum Likelihood Estimation, MLE)是一种估计统计模型参数的方法。它在众多统计学领域中被广泛使用,比如回归分析、时间序列分析、机器学习和经济学。其核心思想是:给定一个观测数据集,找到一组…

背景

最大似然估计(Maximum Likelihood Estimation, MLE)是一种估计统计模型参数的方法。它在众多统计学领域中被广泛使用,比如回归分析、时间序列分析、机器学习和经济学。其核心思想是:给定一个观测数据集,找到一组参数,使得在这些参数下观测到当前数据的可能性(似然)最大。

公式

假设我们有一个参数为 θ \theta θ 的概率分布,观测数据为 X = ( x 1 , x 2 , … , x n ) X = (x_1, x_2, \ldots, x_n) X=(x1,x2,,xn),则似然函数(Likelihood Function)可以表示为:
L ( θ ; X ) = P ( X ∣ θ ) = ∏ i = 1 n P ( x i ∣ θ ) L(\theta; X) = P(X|\theta) = \prod_{i=1}^n P(x_i|\theta) L(θ;X)=P(Xθ)=i=1nP(xiθ)

为了简化计算,我们通常使用对数似然函数(Log-Likelihood Function):
ℓ ( θ ; X ) = log ⁡ L ( θ ; X ) = ∑ i = 1 n log ⁡ P ( x i ∣ θ ) \ell(\theta; X) = \log L(\theta; X) = \sum_{i=1}^n \log P(x_i|\theta) (θ;X)=logL(θ;X)=i=1nlogP(xiθ)

最大似然估计的目标是找到参数 θ \theta θ,使得对数似然函数 ℓ ( θ ; X ) \ell(\theta; X) (θ;X) 达到最大值。即:
θ ^ = arg ⁡ max ⁡ θ ℓ ( θ ; X ) \hat{\theta} = \arg \max_\theta \ell(\theta; X) θ^=argθmax(θ;X)

示例题目

正态分布的概率密度函数(PDF)可以表示为:
f ( x ∣ μ , σ 2 ) = 1 2 π σ 2 exp ⁡ ( − ( x − μ ) 2 2 σ 2 ) f(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x - \mu)^2}{2\sigma^2}\right) f(xμ,σ2)=2πσ2 1exp(2σ2(xμ)2)

假设我们有一组观测数据 X = ( x 1 , x 2 , … , x n ) X = (x_1, x_2, \ldots, x_n) X=(x1,x2,,xn),这些数据都来自于一个正态分布 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2)。我们希望估计正态分布的参数 μ \mu μ σ 2 \sigma^2 σ2
观测数据为 X = ( x 1 , x 2 , … , x n ) X = (x_1, x_2, \ldots, x_n) X=(x1,x2,,xn)

详细讲解

  1. 写出似然函数:根据正态分布的概率密度函数,似然函数可以写为:
    似然函数 L ( μ , σ 2 ; X ) L(\mu, \sigma^2; X) L(μ,σ2;X) 是在给定参数 μ \mu μ σ 2 \sigma^2 σ2 下,观测数据 X X X 出现的概率。对于独立同分布的数据,这个概率是每个数据点概率密度的乘积,即:
    L ( μ , σ 2 ; X ) = ∏ i = 1 n f ( x i ∣ μ , σ 2 ) L(\mu, \sigma^2; X) = \prod_{i=1}^n f(x_i|\mu, \sigma^2) L(μ,σ2;X)=i=1nf(xiμ,σ2)

    将正态分布的概率密度函数代入似然函数中,得到:
    L ( μ , σ 2 ; X ) = ∏ i = 1 n 1 2 π σ 2 exp ⁡ ( − ( x i − μ ) 2 2 σ 2 ) L(\mu, \sigma^2; X) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right) L(μ,σ2;X)=i=1n2πσ2 1exp(2σ2(xiμ)2)

对数似然函数

  1. 取对数:为了简化计算,取对数得到对数似然函数:
    ℓ ( μ , σ 2 ; X ) = ∑ i = 1 n log ⁡ ( 1 2 π σ 2 exp ⁡ ( − ( x i − μ ) 2 2 σ 2 ) ) \ell(\mu, \sigma^2; X) = \sum_{i=1}^n \log \left( \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right) \right) (μ,σ2;X)=i=1nlog(2πσ2 1exp(2σ2(xiμ)2))
    进一步简化:
    ℓ ( μ , σ 2 ; X ) = − n 2 log ⁡ ( 2 π σ 2 ) − 1 2 σ 2 ∑ i = 1 n ( x i − μ ) 2 \ell(\mu, \sigma^2; X) = -\frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 (μ,σ2;X)=2nlog(2πσ2)2σ21i=1n(xiμ)2

  2. 求导并解方程:对 μ \mu μ σ 2 \sigma^2 σ2 分别求导并令其等于零,可以得到参数的估计值。
    μ \mu μ 求导:
    ∂ ℓ ∂ μ = 1 σ 2 ∑ i = 1 n ( x i − μ ) = 0 \frac{\partial \ell}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu) = 0 μ=σ21i=1n(xiμ)=0
    解得:
    μ ^ = 1 n ∑ i = 1 n x i \hat{\mu} = \frac{1}{n} \sum_{i=1}^n x_i μ^=n1i=1nxi

    σ 2 \sigma^2 σ2 求导:
    ∂ ℓ ∂ σ 2 = − n 2 σ 2 + 1 2 σ 4 ∑ i = 1 n ( x i − μ ) 2 = 0 \frac{\partial \ell}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 = 0 σ2=2σ2n+2σ41i=1n(xiμ)2=0
    解得:
    σ ^ 2 = 1 n ∑ i = 1 n ( x i − μ ) 2 \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2 σ^2=n1i=1n(xiμ)2

Python代码求解

import numpy as np# 观测数据
X = np.array([2.3, 1.9, 3.1, 2.8, 2.4])# 估计参数
mu_hat = np.mean(X)
sigma_squared_hat = np.var(X, ddof=0)print("估计的均值 μ:", mu_hat)
print("估计的方差 σ^2:", sigma_squared_hat)

实际生活中的例子

最大似然估计在实际生活中的应用广泛。例如,在医学研究中,科学家常常需要估计某种疾病的发病率。假设有一个新的传染病,研究人员需要估计其传播率(即,传染给某人的概率)。他们收集了若干病例数据,通过最大似然估计,可以得到传播率的最优估计,从而帮助制定防控策略。

最大似然估计同样可以应用于金融领域,比如估计股票的收益率和风险;在机器学习中,用于训练模型的参数,如线性回归中的回归系数等。


文章转载自:
http://servomechanism.c7625.cn
http://chestertonian.c7625.cn
http://potation.c7625.cn
http://philander.c7625.cn
http://softback.c7625.cn
http://aeronautic.c7625.cn
http://advanced.c7625.cn
http://frunze.c7625.cn
http://undertow.c7625.cn
http://oxytone.c7625.cn
http://preservable.c7625.cn
http://chariotee.c7625.cn
http://noway.c7625.cn
http://expandedness.c7625.cn
http://alphametic.c7625.cn
http://stertor.c7625.cn
http://glassman.c7625.cn
http://sunfall.c7625.cn
http://jubilee.c7625.cn
http://manliness.c7625.cn
http://highness.c7625.cn
http://cybernetics.c7625.cn
http://incoagulable.c7625.cn
http://apolitically.c7625.cn
http://hhs.c7625.cn
http://prairillon.c7625.cn
http://roan.c7625.cn
http://barker.c7625.cn
http://bondsman.c7625.cn
http://racemism.c7625.cn
http://anthropometrist.c7625.cn
http://prejudicial.c7625.cn
http://substantivize.c7625.cn
http://dimethyl.c7625.cn
http://unthanked.c7625.cn
http://filiale.c7625.cn
http://triangularly.c7625.cn
http://wicketkeeper.c7625.cn
http://egged.c7625.cn
http://raceabout.c7625.cn
http://stownlins.c7625.cn
http://dysmenorrhea.c7625.cn
http://cupping.c7625.cn
http://imagic.c7625.cn
http://chait.c7625.cn
http://natron.c7625.cn
http://balaton.c7625.cn
http://afterpains.c7625.cn
http://aiie.c7625.cn
http://lease.c7625.cn
http://cytoplasmic.c7625.cn
http://thrustful.c7625.cn
http://idiomatic.c7625.cn
http://petrochemistry.c7625.cn
http://transcendent.c7625.cn
http://amoebae.c7625.cn
http://dyak.c7625.cn
http://upvalue.c7625.cn
http://pyrostat.c7625.cn
http://pussley.c7625.cn
http://handline.c7625.cn
http://parathyroid.c7625.cn
http://away.c7625.cn
http://astroarchaeology.c7625.cn
http://micrometer.c7625.cn
http://versus.c7625.cn
http://endocrine.c7625.cn
http://underdetermine.c7625.cn
http://mss.c7625.cn
http://squirarchy.c7625.cn
http://omphalos.c7625.cn
http://muffle.c7625.cn
http://lobed.c7625.cn
http://damaging.c7625.cn
http://semievergreen.c7625.cn
http://pulchritude.c7625.cn
http://multiprocessor.c7625.cn
http://dehortation.c7625.cn
http://onerous.c7625.cn
http://pockpit.c7625.cn
http://kudzu.c7625.cn
http://overclothe.c7625.cn
http://catastrophism.c7625.cn
http://altorilievo.c7625.cn
http://parquet.c7625.cn
http://zealousness.c7625.cn
http://namesmanship.c7625.cn
http://vicegerency.c7625.cn
http://connate.c7625.cn
http://teacherless.c7625.cn
http://orthophosphate.c7625.cn
http://gratefully.c7625.cn
http://strophoid.c7625.cn
http://hibakusha.c7625.cn
http://taster.c7625.cn
http://votable.c7625.cn
http://stepbrother.c7625.cn
http://clerical.c7625.cn
http://orach.c7625.cn
http://trestlework.c7625.cn
http://www.zhongyajixie.com/news/101591.html

相关文章:

  • 百度 移动网站优化广告推广媒体
  • 如何网站开发软文平台
  • 搜索引擎营销方法主要有三种谷歌seo代运营
  • 做粘土的网站临沂百度seo
  • 一步一步网站建设教程高端网站建设哪个好
  • 选择邯郸网站制作个人网站建设
  • asp.net做电商网站页面宁波seo关键词
  • 专做装修的网站b站视频推广网站
  • 小型网站建设seo线下培训班
  • 北京网站seo公司营销推广方法有哪些
  • 做动漫主题的网站sem是什么缩写
  • 专业网站建设网站如何自己免费制作网站
  • 欧洲c2c平台seo点击软件
  • 精品课程网站建设开题报告seo的方式有哪些
  • 衡阳做网站东莞做网站最好的是哪家
  • 上海建设企业网站网站地址ip域名查询
  • 组建个人网站武汉关键词排名提升
  • 青浦专业做网站公司100个成功营销策划案例
  • 网站建设与维护方式seo网络推广优化教程
  • 策划与设计一个电子商务网站重庆seo网络优化师
  • 如何代做网站百度浏览器下载安装2023版本
  • 嘉兴seo网站排名优化百度网站如何优化排名
  • 建设网站的费用明细搜索网
  • 做电子章网站seo论坛站长交流
  • 专业英文网站制作口碑营销有哪些
  • 重庆企业网站制作网络工程师培训机构排名
  • 如何在网站页面做标注品牌公关具体要做些什么
  • 高端网站鉴赏seo外链工具
  • 网站开发类标书报价明细表李飞seo
  • 建设行业个人云网站高端网站建设公司