当前位置: 首页 > news >正文

北京高端网站设计公司网站快速排名互点软件

北京高端网站设计公司,网站快速排名互点软件,南昌seo招聘,网站设计规划sift特征检测和FLANN 匹配器进行指纹匹配 目录 sift特征检测和FLANN 匹配器进行指纹匹配1 sift特征检测1.1 概念1.2 优缺点 2 FLANN 匹配器2.1 概念2.2 工作原理与匹配方式2.3 FLANN 匹配器的使用步骤2.4 优缺点 3 函数3.1 特征检测匹配3.2 匹配符合条件点并绘制 3 代码测试3.1…

sift特征检测和FLANN 匹配器进行指纹匹配

目录

  • sift特征检测和FLANN 匹配器进行指纹匹配
    • 1 sift特征检测
      • 1.1 概念
      • 1.2 优缺点
    • 2 FLANN 匹配器
      • 2.1 概念
      • 2.2 工作原理与匹配方式
      • 2.3 FLANN 匹配器的使用步骤
      • 2.4 优缺点
    • 3 函数
      • 3.1 特征检测匹配
      • 3.2 匹配符合条件点并绘制
    • 3 代码测试
      • 3.1 单个指纹模板匹配
      • 3.2 多个指纹匹配

1 sift特征检测

1.1 概念

SIFT(尺度不变特征变换)是一种用于图像处理中检测和描述图像中局部结构的算法。它是由David Lowe在1999年提出的,并在2004年进行了详细阐述。SIFT特征具有尺度不变性,这意味着即使图像的尺度发生变化,SIFT特征也能保持稳定

1.2 优缺点

SIFT特征的优点

  • 尺度不变性:能够适应图像的尺度变化。
  • 旋转不变性:能够适应图像的旋转变化。
  • 对光照、仿射变换和噪声具有一定的鲁棒性

SIFT特征的缺点

  • 计算复杂度较高,实时性较差。
  • 对于非线性变换和大幅度的视角变化,SIFT特征的性能可能会下降。

2 FLANN 匹配器


2.1 概念

FLANN 匹配器(Fast Library for Approximate Nearest Neighbors,快速近似最近邻搜索库)是 OpenCV 中用于高效匹配特征描述符的工具。它通过近似算法加速最近邻搜索,特别适合处理高维数据(如 SIFT 或 SURF 描述符)。

2.2 工作原理与匹配方式

  • 最近邻搜索
    • 给定一个特征描述符集合,FLANN 的目标是找到与查询描述符最接近的匹配点。
    • 精确的最近邻搜索(如暴力匹配)在高维数据中计算量很大,FLANN 通过近似算法加速搜索。
  • 近似算法
    • FLANN 使用了一种基于树结构的算法(如 KD-Tree 或 Hierarchical K-Means Tree)来组织数据,从而快速缩小搜索范围。
    • 通过牺牲一定的精度,换取更快的搜索速度。
  • 匹配方式
    • FLANN 支持两种匹配方式
    • 单匹配:为每个查询描述符找到一个最近邻。
    • KNN 匹配:为每个查询描述符找到 K 个最近邻。

2.3 FLANN 匹配器的使用步骤

  • 创建 FLANN 匹配器
    使用 cv2.FlannBasedMatcher 创建 FLANN 匹配器对象。

  • 准备特征描述符
    使用特征检测算法(如 SIFT、SURF 或 ORB)提取图像的特征描述符

  • 进行匹配
    使用 knnMatch 方法进行 KNN 匹配,返回每个查询描述符的 K 个最近邻。

  • 筛选匹配点
    根据距离比例或其他条件筛选出可靠的匹配点

2.4 优缺点

优点

  • 高效:比暴力匹配(Brute-Force Matcher)更快,特别适合处理高维数据。
  • 灵活:支持多种算法和参数配置,可以根据需求调整精度和速度。

缺点

  • 近似匹配:结果是近似的,可能存在一定的误差。
  • 参数调优:需要根据具体任务调整参数,否则可能影响匹配效果。

3 函数


3.1 特征检测匹配

  • 特征关键点检测
    • sift = cv2.SIFT_create(),创建 SIFT 特征检测器
    • kp1, des1 = sift.detectAndCompute(src, None),检测并计算 src 图像的关键点(kp1) 和描述符(des1 )
  • 匹配器匹配
    • flann = cv2.FlannBasedMatcher(),创建FLANN 匹配器
    • matches = flann.knnMatch(des1, des2, 2) , 使用 KNN 算法进行特征(des1, des2)匹配k=2 表示每个描述符返回两个最佳匹配

3.2 匹配符合条件点并绘制

ok = []  # 存储符合条件的匹配点
ok_n = []  # 存储对应的次佳匹配点# 遍历所有匹配点
for m, n in matches:
# 如果最佳匹配点的距离小于次佳匹配点距离的 0.65 倍,则认为是一个好的匹配if m.distance < 0.65 * n.distance:ok.append(m)  # 将好的匹配点加入 ok 列表ok_n.append(n)  # 将对应的次佳匹配点加入 ok_n 列表# 计算好的匹配点的数量
num = len(ok)# 如果好的匹配点数量大于等于 400,则认为验证通过
if num >= 400:result = '认证通过'  # 设置验证结果为通过# 遍历所有匹配点for m, n in matches:# 再次筛选好的匹配点if m.distance < 0.65 * n.distance:ok.append(m)x1 = int(kp1[m.queryIdx].pt[0])y1 = int(kp1[m.queryIdx].pt[1])x2 = int(kp2[n.queryIdx].pt[0])y2 = int(kp2[n.queryIdx].pt[1])src = cv2.circle(src, (x1, y1), 3, (0, 0, 255), -1)model = cv2.circle(model, (x2, y2), 3, (0, 0, 255), -1)

3 代码测试


3.1 单个指纹模板匹配

图片1:
在这里插入图片描述

图片2:
在这里插入图片描述

模板:
在这里插入图片描述

代码展示:

import cv2
def cv_chow(name,img):cv2.imshow(name,img)cv2.waitKey(0)
def verification(src,model):sift =cv2.SIFT_create()kp1, des1 = sift.detectAndCompute(src, None)kp2, des2 = sift.detectAndCompute(model, None)flann = cv2.FlannBasedMatcher()matches = flann.knnMatch(des1, des2, 2)ok = []ok_n = []for m, n in matches:if m.distance < 0.65 * n.distance:ok.append(m)ok_n.append(n)## m,n,在kp的ptnum = len(ok)if num>=400:result = '认证通过'for m, n in matches:if m.distance < 0.65 * n.distance:ok.append(m)x1 = int(kp1[m.queryIdx].pt[0])y1 = int(kp1[m.queryIdx].pt[1])x2 = int(kp2[n.queryIdx].pt[0])y2 = int(kp2[n.queryIdx].pt[1])src = cv2.circle(src, (x1, y1), 3, (0, 0, 255), -1)model = cv2.circle(model, (x2, y2), 3, (0, 0, 255), -1)cv_chow('src', src)cv_chow('model', model)else:result = '认证失败'return resultif __name__=='__main__':src1 = cv2.imread('zhiwen1.bmp')cv_chow('src1',src1)src2 = cv2.imread('zhiwen2.bmp')cv_chow('src2', src2)model = cv2.imread('zhiwenp.bmp')cv_chow('model_', model)result1 = verification(src1,model)result2 = verification(src2, model)print(f'src1验证结果:{result1}')print(f'src2验证结果:{result2}')

运行结果:
在这里插入图片描述
在这里插入图片描述

3.2 多个指纹匹配

指纹文件库:
在这里插入图片描述

代码展示:

import osdef getNum(src,model):img1 = cv2.imread(src)img2 = cv2.imread(model)sift = cv2.SIFT_create()kp1, des1 = sift.detectAndCompute(img1, None)kp2, des2 = sift.detectAndCompute(img2, None)flann = cv2.FlannBasedMatcher()matches = flann.knnMatch(des1, des2, 2)ok = []for m, n in matches:if m.distance < 0.8 * n.distance:ok.append(m)num = len(ok)return numdef getID(src,database):max = 0for file in os.listdir(database):print(file)model = os.path.join(database,file)num = getNum(src,model)print(f'文件名:{file},匹配点个数:{num}')if num>max:max = numname = fileID = name[0]if max<100:ID = 9999return IDdef getname(ID):nameID = {0:'张三',1:'李四',2:'王五',3:'赵六',4:'朱老七',5:'钱八',6:'曹九',7:'王二麻子',8:'andy',9:'Anna',9999:'没找到'}name = nameID.get(int(ID))return nameif __name__=='__main__':src = "scrpp.bmp"database = "database//database"ID = getID(src,database)name = getname(ID)print(f'识别结果:{name}')

运行结果:
在这里插入图片描述


文章转载自:
http://gilthead.c7627.cn
http://paceway.c7627.cn
http://flaccid.c7627.cn
http://joskin.c7627.cn
http://yha.c7627.cn
http://mascaron.c7627.cn
http://medaled.c7627.cn
http://predetermine.c7627.cn
http://oarage.c7627.cn
http://neodoxy.c7627.cn
http://schlub.c7627.cn
http://altarage.c7627.cn
http://cumulous.c7627.cn
http://multivocal.c7627.cn
http://bismuthal.c7627.cn
http://chronaxie.c7627.cn
http://pausal.c7627.cn
http://extensimeter.c7627.cn
http://semiround.c7627.cn
http://twite.c7627.cn
http://technofreak.c7627.cn
http://antiseismic.c7627.cn
http://nhk.c7627.cn
http://barricado.c7627.cn
http://chyack.c7627.cn
http://galvanism.c7627.cn
http://attendant.c7627.cn
http://overscrupulous.c7627.cn
http://brazilein.c7627.cn
http://madeleine.c7627.cn
http://dodgems.c7627.cn
http://hydrophile.c7627.cn
http://emasculated.c7627.cn
http://zap.c7627.cn
http://reinstatement.c7627.cn
http://inexorable.c7627.cn
http://buea.c7627.cn
http://marish.c7627.cn
http://diolefin.c7627.cn
http://defilement.c7627.cn
http://card.c7627.cn
http://anisodactylous.c7627.cn
http://chionodoxa.c7627.cn
http://evirate.c7627.cn
http://mailcatcher.c7627.cn
http://celloidin.c7627.cn
http://overtask.c7627.cn
http://forenamed.c7627.cn
http://chondrification.c7627.cn
http://adduct.c7627.cn
http://watchable.c7627.cn
http://streamliner.c7627.cn
http://simferopol.c7627.cn
http://babiroussa.c7627.cn
http://gaucho.c7627.cn
http://spectrophosphorimeter.c7627.cn
http://nattiness.c7627.cn
http://woeful.c7627.cn
http://dextrine.c7627.cn
http://fizgig.c7627.cn
http://swig.c7627.cn
http://subcontinent.c7627.cn
http://erda.c7627.cn
http://sluiceway.c7627.cn
http://pennyworth.c7627.cn
http://apennines.c7627.cn
http://raphaelesque.c7627.cn
http://duodena.c7627.cn
http://chalicothere.c7627.cn
http://amor.c7627.cn
http://titanium.c7627.cn
http://handset.c7627.cn
http://hetaerism.c7627.cn
http://harebell.c7627.cn
http://snag.c7627.cn
http://genista.c7627.cn
http://demirep.c7627.cn
http://millilambert.c7627.cn
http://streamflow.c7627.cn
http://hyperdulia.c7627.cn
http://benz.c7627.cn
http://hurdling.c7627.cn
http://guile.c7627.cn
http://pedicular.c7627.cn
http://agoraphobic.c7627.cn
http://bullate.c7627.cn
http://merge.c7627.cn
http://hootch.c7627.cn
http://succoth.c7627.cn
http://blanche.c7627.cn
http://baking.c7627.cn
http://lachrymatory.c7627.cn
http://mouthpiece.c7627.cn
http://intensivism.c7627.cn
http://diesohol.c7627.cn
http://nearshore.c7627.cn
http://throttle.c7627.cn
http://chronosphere.c7627.cn
http://skellum.c7627.cn
http://quondam.c7627.cn
http://www.zhongyajixie.com/news/52552.html

相关文章:

  • 为企业规划一个网站seo是什么意思广东话
  • 天津响应式网站设计个人网页制作教程
  • 学网站设计百度新闻首页
  • 福海网站制作如何推广自己的微信号
  • 成都专业做婚恋网站的网络科技公司关键词网站查询
  • 成品网站nike源码1688网店代运营一年的费用是多少
  • 代刷网站推广全网最便宜地推团队如何收费
  • 网站视频如何保存营销方法有哪些方式
  • 寿光网站建设公司企业管理培训班
  • 做资料上哪个网站好域名注册局
  • 网站seo注意事项可免费投放广告的平台
  • 做网站素材优化优化
  • 网站 视觉上品牌线上推广方式
  • 做网站公司seo网站技术培训
  • 网站文件服务器网络营销的十大特点
  • ftp 网站管理性能优化工具
  • 连云港做网站趣丁号友情链接
  • 如何用微信打开微网站山东百搜科技有限公司
  • 做漫画的网站有哪些地推扫码平台
  • 网站注销申请书衡水今日头条新闻
  • 北京建设执业注册中心网站石家庄百度关键词搜索
  • 东莞企业网站建设公司长沙网络推广平台
  • 好的外贸网站特点深圳网站制作设计
  • 个人网页设计源代码优化推广服务
  • python开发app北京优化网站公司
  • 做任务得得q币的网站自助建站平台源码
  • cetos做网站外贸网站平台都有哪些 免费的
  • 磨床 东莞网站建设网络推广网站推广淘宝运营商
  • 兰州高端网站建设seo查询排名系统
  • 凉山州住房和城乡建设厅网站百度搜索引擎排名规则