当前位置: 首页 > news >正文

html5支持最好的浏览器吉林关键词优化的方法

html5支持最好的浏览器,吉林关键词优化的方法,展会网站建设,上海徐家汇网站建设入门基础(二) NumPy是Python中一个重要的数学运算库,它提供了了一组多维数组对象和一组用于操作这些数组的函数。以下是一些NumPy的主要特点: 多维数组对象:NumPy的核心是ndarray对象,它是一个多维数组对…

9a6d821e8f414c749ef1143368e115ee.png

入门基础(二)

NumPy是Python中一个重要的数学运算库,它提供了了一组多维数组对象和一组用于操作这些数组的函数。以下是一些NumPy的主要特点:

  1. 多维数组对象:NumPy的核心是ndarray对象,它是一个多维数组对象,可以容纳任意数据类型。
  2. 矢量化操作:使用NumPy的函数,可以对整个数组进行操作,而不需要显式循环。
  3. 广播:NumPy的广播机制允许对不同形状的数组执行算术操作,而无需进行显式循环或手动对齐。
  4. 易于扩展:NumPy可以用C或C++扩展,以加速大型数值计算任务。
  5. 强大的函数库:NumPy提供了许多用于线性代数、傅里叶分析、随机数生成等领域的函数。
  6. 易于使用:NumPy与Python的内置数据结构无缝集成,因此可以轻松地将Python代码转换为使用NumPy。

数组操作

组索引和切片

索引从0开始,索引值不能超过长度,否则会报IndexError错误。

一维数组的索引和切片

>>> import numpy as np
>>> a = np.array([1,2,3,4,5])
>>> a[2]
3
>>> a[1:4:2]
array([2, 4])
>>> a[1:3]
array([2, 3])
>>> a[0::2]
array([1, 3, 5])
>>> a[5]
Traceback (most recent call last):File "<pyshell#15>", line 1, in <module>a[5]
IndexError: index 5 is out of bounds for axis 0 with size 5

多维数组的索引

>>> import numpy as np
>>> a = np.arange(24).reshape((2,3,4))
>>> a
array([[[ 0,  1,  2,  3],[ 4,  5,  6,  7],[ 8,  9, 10, 11]],[[12, 13, 14, 15],[16, 17, 18, 19],[20, 21, 22, 23]]])
>>> a[1,2,3]
23
>>> a[-1,-2,-3]
17
>>> a[0,2,2]
10
>>> a[0,3,3]
Traceback (most recent call last):File "<pyshell#12>", line 1, in <module>a[0,3,3]
IndexError: index 3 is out of bounds for axis 1 with size 3

多维数组切片

>>> import numpy as np
>>> a = np.arange(24).reshape((2,3,4)) + 1
>>> a
array([[[ 1,  2,  3,  4],[ 5,  6,  7,  8],[ 9, 10, 11, 12]],[[13, 14, 15, 16],[17, 18, 19, 20],[21, 22, 23, 24]]])
>>> a[:1,2]
array([[ 9, 10, 11, 12]])
>>> a[:,1:3,:]
array([[[ 5,  6,  7,  8],[ 9, 10, 11, 12]],[[17, 18, 19, 20],[21, 22, 23, 24]]])
>>> a[:,:,::2]
array([[[ 1,  3],[ 5,  7],[ 9, 11]],[[13, 15],[17, 19],[21, 23]]])
>>> a[:,:,1::2]
array([[[ 2,  4],[ 6,  8],[10, 12]],[[14, 16],[18, 20],[22, 24]]])
>>> a[1:3,:,:]
array([[[13, 14, 15, 16],[17, 18, 19, 20],[21, 22, 23, 24]]])
>>> a[1:3,1:3,:]
array([[[17, 18, 19, 20],[21, 22, 23, 24]]])
>>> a[1:3,1:3,1:3]
array([[[18, 19],[22, 23]]])

通过布尔数组访问数组元素

>>> import numpy as np
>>> a = np.array([1, 2, 3, 4, 5])
>>> b = np.array([True, False, True, False, True])
>>> a[b]
array([1, 3, 5])
>>> b = np.array([False, True, False, True, False])
>>> a[b]
array([2, 4])
>>> b = a<=3
>>> a[b]
array([1, 2, 3])
>>> b = a%2==0
>>> a[b]
array([2, 4])
>>> b = a%2==1
>>> a[b]
array([1, 3, 5])

数组的整体操作

数组的拼接

在 NumPy 中,可以使用多种方法来拼接数组。以下是一些常用的方法:

numpy.concatenate()

这个函数用于连接两个数组,沿指定的轴在末尾添加第二个数组的元素。

>>> a = np.array([[1, 2], [3, 4]])
>>> b = np.array([[5, 6]])
>>> np.concatenate((a, b), axis=0)
array([[1, 2],[3, 4],[5, 6]])
>>> np.concatenate((a, b.T), axis=1)
array([[1, 2, 5],[3, 4, 6]])
>>> np.concatenate((a, b), axis=None)
array([1, 2, 3, 4, 5, 6])
numpy.vstack()

这个函数用于垂直方向拼接数组,即行方向添加第二个数组的元素。

>>> a = np.array([1, 2, 3])
>>> b = np.array([4, 5, 6])
>>> np.vstack((a,b))
array([[1, 2, 3],[4, 5, 6]])>>> a = np.array([[1], [2], [3]])
>>> b = np.array([[4], [5], [6]])
>>> np.vstack((a,b))
array([[1],[2],[3],[4],[5],[6]])
numpy.hstack()

这个函数用于水平方向拼接数组,即列方向添加第二个数组的元素。

>>> a = np.array((1,2,3))
>>> b = np.array((4,5,6))
>>> np.hstack((a,b))
array([1, 2, 3, 4, 5, 6])
>>> a = np.array([[1],[2],[3]])
>>> b = np.array([[4],[5],[6]])
>>> np.hstack((a,b))
array([[1, 4],[2, 5],[3, 6]])
numpy.row_stack()

这个函数是vstack的alias,别名就是同一个函数。

>>> import numpy as np
>>> a = np.array([[1, 2], [3, 4]])
>>> b = np.array([[5, 6]])
>>> np.row_stack((a, b))
array([[1, 2],[3, 4],[5, 6]])

在使用这些函数时,需要确保拼接的数组具有相同的维度,或者在使用 numpy.column_stack() 时具有相同的列数。如果维度不同,可以使用 numpy.reshape() 函数对数组进行重塑。

数组的翻转

在 NumPy 中,也有多种方法可以翻转数组。以下是一些常用的方法:

numpy.flip()

这个函数用于沿指定的轴翻转数组。

    Examples
    --------
    >>> A = np.arange(8).reshape((2,2,2))
    >>> A
    array([[[0, 1],
            [2, 3]],
           [[4, 5],
            [6, 7]]])
    >>> np.flip(A, 0)
    array([[[4, 5],
            [6, 7]],
           [[0, 1],
            [2, 3]]])
    >>> np.flip(A, 1)
    array([[[2, 3],
            [0, 1]],
           [[6, 7],
            [4, 5]]])
    >>> np.flip(A)
    array([[[7, 6],
            [5, 4]],
           [[3, 2],
            [1, 0]]])
    >>> np.flip(A, (0, 2))
    array([[[5, 4],
            [7, 6]],
           [[1, 0],
            [3, 2]]])
    >>> A = np.random.randn(3,4,5)
    >>> np.all(np.flip(A,2) == A[:,:,::-1,...])
    True

numpy.flipud()

这个函数用于垂直方向翻转数组,即行方向翻转。

    Examples
    --------
    >>> A = np.diag([1.0, 2, 3])
    >>> A
    array([[1.,  0.,  0.],
           [0.,  2.,  0.],
           [0.,  0.,  3.]])
    >>> np.flipud(A)
    array([[0.,  0.,  3.],
           [0.,  2.,  0.],
           [1.,  0.,  0.]])
    
    >>> A = np.random.randn(2,3,5)
    >>> np.all(np.flipud(A) == A[::-1,...])
    True
    
    >>> np.flipud([1,2])
    array([2, 1])

numpy.fliplr()

这个函数用于水平方向翻转数组,即列方向翻转。

    Examples
    --------
    >>> A = np.diag([1.,2.,3.])
    >>> A
    array([[1.,  0.,  0.],
           [0.,  2.,  0.],
           [0.,  0.,  3.]])
    >>> np.fliplr(A)
    array([[0.,  0.,  1.],
           [0.,  2.,  0.],
           [3.,  0.,  0.]])
    
    >>> A = np.random.randn(2,3,5)
    >>> np.all(np.fliplr(A) == A[:,::-1,...])
    True

在使用这些函数时,需要确保数组的维度适合进行翻转。

数组的复制

    Examples
    --------
    Create an array x, with a reference y and a copy z:
    
    >>> x = np.array([1, 2, 3])
    >>> y = x
    >>> z = np.copy(x)
    
    Note that, when we modify x, y changes, but not z:
    
    >>> x[0] = 10
    >>> x[0] == y[0]
    True
    >>> x[0] == z[0]
    False
    
    Note that, np.copy clears previously set WRITEABLE=False flag.
    
    >>> a = np.array([1, 2, 3])
    >>> a.flags["WRITEABLE"] = False
    >>> b = np.copy(a)
    >>> b.flags["WRITEABLE"]
    True
    >>> b[0] = 3
    >>> b
    array([3, 2, 3])
    
    Note that np.copy is a shallow copy and will not copy object
    elements within arrays. This is mainly important for arrays
    containing Python objects. The new array will contain the
    same object which may lead to surprises if that object can
    be modified (is mutable):
    
    >>> a = np.array([1, 'm', [2, 3, 4]], dtype=object)
    >>> b = np.copy(a)
    >>> b[2][0] = 10
    >>> a
    array([1, 'm', list([10, 3, 4])], dtype=object)
    
    To ensure all elements within an ``object`` array are copied,
    use `copy.deepcopy`:
    
    >>> import copy
    >>> a = np.array([1, 'm', [2, 3, 4]], dtype=object)
    >>> c = copy.deepcopy(a)
    >>> c[2][0] = 10
    >>> c
    array([1, 'm', list([10, 3, 4])], dtype=object)
    >>> a
    array([1, 'm', list([2, 3, 4])], dtype=object)

数组的排序

    Examples
    --------
    >>> a = np.array([[1,4],[3,1]])
    >>> np.sort(a)                # sort along the last axis
    array([[1, 4],
           [1, 3]])
    >>> np.sort(a, axis=None)     # sort the flattened array
    array([1, 1, 3, 4])
    >>> np.sort(a, axis=0)        # sort along the first axis
    array([[1, 1],
           [3, 4]])
    
    Use the `order` keyword to specify a field to use when sorting a
    structured array:
    
    >>> dtype = [('name', 'S10'), ('height', float), ('age', int)]
    >>> values = [('Arthur', 1.8, 41), ('Lancelot', 1.9, 38),
    ...           ('Galahad', 1.7, 38)]
    >>> a = np.array(values, dtype=dtype)       # create a structured array
    >>> np.sort(a, order='height')                        # doctest: +SKIP
    array([('Galahad', 1.7, 38), ('Arthur', 1.8, 41),
           ('Lancelot', 1.8999999999999999, 38)],
          dtype=[('name', '|S10'), ('height', '<f8'), ('age', '<i4')])
    
    Sort by age, then height if ages are equal:
    
    >>> np.sort(a, order=['age', 'height'])               # doctest: +SKIP
    array([('Galahad', 1.7, 38), ('Lancelot', 1.8999999999999999, 38),
           ('Arthur', 1.8, 41)],
          dtype=[('name', '|S10'), ('height', '<f8'), ('age', '<i4')])


数组的数学操作

加法

>>> added_arr = arr1 + arr2

减法

>>> subtracted_arr = arr1 - arr2

乘法

>>> multiplied_arr = arr1 * arr2

除法

>>> divided_arr = arr1 / arr2

幂运算

>>> power_arr = np.power(arr1, arr2)


数组的统计操作

均值

mean = np.mean(arr)

    Examples
    --------
    >>> a = np.array([[1, 2], [3, 4]])
    >>> np.mean(a)
    2.5
    >>> np.mean(a, axis=0)
    array([2., 3.])
    >>> np.mean(a, axis=1)
    array([1.5, 3.5])
    
    In single precision, `mean` can be inaccurate:
    
    >>> a = np.zeros((2, 512*512), dtype=np.float32)
    >>> a[0, :] = 1.0
    >>> a[1, :] = 0.1
    >>> np.mean(a)
    0.54999924
    
    Computing the mean in float64 is more accurate:
    
    >>> np.mean(a, dtype=np.float64)
    0.55000000074505806 # may vary
    
    Specifying a where argument:
    
    >>> a = np.array([[5, 9, 13], [14, 10, 12], [11, 15, 19]])
    >>> np.mean(a)
    12.0
    >>> np.mean(a, where=[[True], [False], [False]])
    9.0

方差

var = np.var(arr)

    Examples
    --------
    >>> a = np.array([[1, 2], [3, 4]])
    >>> np.var(a)
    1.25
    >>> np.var(a, axis=0)
    array([1.,  1.])
    >>> np.var(a, axis=1)
    array([0.25,  0.25])
    
    In single precision, var() can be inaccurate:
    
    >>> a = np.zeros((2, 512*512), dtype=np.float32)
    >>> a[0, :] = 1.0
    >>> a[1, :] = 0.1
    >>> np.var(a)
    0.20250003
    
    Computing the variance in float64 is more accurate:
    
    >>> np.var(a, dtype=np.float64)
    0.20249999932944759 # may vary
    >>> ((1-0.55)**2 + (0.1-0.55)**2)/2
    0.2025
    
    Specifying a where argument:
    
    >>> a = np.array([[14, 8, 11, 10], [7, 9, 10, 11], [10, 15, 5, 10]])
    >>> np.var(a)
    6.833333333333333 # may vary
    >>> np.var(a, where=[[True], [True], [False]])
    4.0

标准差

std = np.std(arr)

    Examples
    --------
    >>> a = np.array([[1, 2], [3, 4]])
    >>> np.std(a)
    1.1180339887498949 # may vary
    >>> np.std(a, axis=0)
    array([1.,  1.])
    >>> np.std(a, axis=1)
    array([0.5,  0.5])
    
    In single precision, std() can be inaccurate:
    
    >>> a = np.zeros((2, 512*512), dtype=np.float32)
    >>> a[0, :] = 1.0
    >>> a[1, :] = 0.1
    >>> np.std(a)
    0.45000005
    
    Computing the standard deviation in float64 is more accurate:
    
    >>> np.std(a, dtype=np.float64)
    0.44999999925494177 # may vary
    
    Specifying a where argument:
    
    >>> a = np.array([[14, 8, 11, 10], [7, 9, 10, 11], [10, 15, 5, 10]])
    >>> np.std(a)
    2.614064523559687 # may vary
    >>> np.std(a, where=[[True], [True], [False]])
    2.0

最大值、最小值

max_value = np.max(arr)

    Examples
    --------
    >>> a = np.arange(4).reshape((2,2))
    >>> a
    array([[0, 1],
           [2, 3]])
    >>> np.amax(a)           # Maximum of the flattened array
    3
    >>> np.amax(a, axis=0)   # Maxima along the first axis
    array([2, 3])
    >>> np.amax(a, axis=1)   # Maxima along the second axis
    array([1, 3])
    >>> np.amax(a, where=[False, True], initial=-1, axis=0)
    array([-1,  3])
    >>> b = np.arange(5, dtype=float)
    >>> b[2] = np.NaN
    >>> np.amax(b)
    nan
    >>> np.amax(b, where=~np.isnan(b), initial=-1)
    4.0
    >>> np.nanmax(b)
    4.0
    
    You can use an initial value to compute the maximum of an empty slice, or
    to initialize it to a different value:
    
    >>> np.amax([[-50], [10]], axis=-1, initial=0)
    array([ 0, 10])
    
    Notice that the initial value is used as one of the elements for which the
    maximum is determined, unlike for the default argument Python's max
    function, which is only used for empty iterables.
    
    >>> np.amax([5], initial=6)
    6
    >>> max([5], default=6)
    5

min_value = np.min(arr)

    Examples
    --------
    >>> a = np.arange(4).reshape((2,2))
    >>> a
    array([[0, 1],
           [2, 3]])
    >>> np.amin(a)           # Minimum of the flattened array
    0
    >>> np.amin(a, axis=0)   # Minima along the first axis
    array([0, 1])
    >>> np.amin(a, axis=1)   # Minima along the second axis
    array([0, 2])
    >>> np.amin(a, where=[False, True], initial=10, axis=0)
    array([10,  1])
    
    >>> b = np.arange(5, dtype=float)
    >>> b[2] = np.NaN
    >>> np.amin(b)
    nan
    >>> np.amin(b, where=~np.isnan(b), initial=10)
    0.0
    >>> np.nanmin(b)
    0.0
    
    >>> np.amin([[-50], [10]], axis=-1, initial=0)
    array([-50,   0])
    
    Notice that the initial value is used as one of the elements for which the
    minimum is determined, unlike for the default argument Python's max
    function, which is only used for empty iterables.
    
    Notice that this isn't the same as Python's ``default`` argument.
    
    >>> np.amin([6], initial=5)
    5
    >>> min([6], default=5)
    6

9a6d821e8f414c749ef1143368e115ee.png

http://www.zhongyajixie.com/news/42794.html

相关文章:

  • 怎么做网站优化推广注册网站流程和费用
  • wordpress base做网站优化哪家公司好
  • 服务型网站建设百度推广平台登陆
  • 公司法人变更怎么办理小辉seo
  • 可靠的机票网站建设爱站工具包下载
  • 广告设计网站哪个好今日国家新闻
  • 免费建站并且绑定域名泉州百度关键词优化
  • 聊城开发区建设局网站福州百度seo代理
  • 自己开网站能赚钱吗营销战略
  • 有免费的网站域名吗北京本地网络推广平台
  • 怎么做网站管理朋友圈广告代理商官网
  • 做平面什么网站好用2022适合小学生的简短新闻摘抄
  • 官方网站建设 磐石网络多少费用今日头条收录入口
  • 兰州网站建设关键词排名seo
  • 何做百度推广网站网站搭建公司哪家好
  • 鞍山做网站排名如何让新网站被收录
  • 烟台百度网站建设企业老板培训课程
  • 如何建设网站 知乎网页推广怎么做
  • 外贸网站如何做的好百度seo关键词优化推荐
  • 临海建设局网站网站在线生成app
  • 财税公司做网站网站点击快速排名
  • 中国做外贸的网站有哪些内容武汉关键词排名提升
  • 做外贸产品上什么网站网络推广员工资多少钱
  • 合肥知名网站制作公司音乐接单推广app平台
  • 用jsp做网站的体会企业网站制作步骤
  • 沐风 wordpress 主题网站优化网站
  • asp网站缺点怎么制作网站?
  • 外文网站做t检验分析搜狗首页排名优化
  • 仿做唯品会网站郑州seo联系搜点网络效果好
  • 兰州小程序定制开发seo优化网站网页教学