当前位置: 首页 > news >正文

做网站需要考虑什么石家庄网站建设方案

做网站需要考虑什么,石家庄网站建设方案,企业网络管理与配置的作者,国外域名注册哪个网站好Question-answering Chatbot with LangChain on an AMD GPU — ROCm Blogs 作者:Phillip Dang 2024年3月11日 LangChain是一个旨在利用语言模型强大功能来构建前沿应用程序的框架。通过将语言模型连接到各种上下文资源并基于给定的上下文提供推理能力,L…

Question-answering Chatbot with LangChain on an AMD GPU — ROCm Blogs

作者:Phillip Dang 2024年3月11日

LangChain是一个旨在利用语言模型强大功能来构建前沿应用程序的框架。通过将语言模型连接到各种上下文资源并基于给定的上下文提供推理能力,LangChain创建了能够智能推理和响应的上下文感知应用程序。在这篇博客中,我们演示了如何使用LangChain和Hugging Face来创建一个简单的问答聊天机器人。我们还展示了如何使用检索增强生成(RAG)技术来增强我们的大型语言模型(LLM)知识,然后允许我们的机器人根据指定文档中的信息来回答查询。

前提条件

要运行本文中的内容,你需要以下条件:

  • AMD GPUs: AMD Instinct GPU.

  • Linux: see the supported Linux distributions.

  • ROCm 6.0+

  • PyTorch

  • 或者,你可以启动一个包含以上设置的 Docker 容器,将 /YOUR/FOLDER 替换成你选择的目录,它将挂载到 Docker 根目录。下面是一个使用 ROCm 6.2 和 PyTorch 2.3 的示例:

    docker run -it --group-add=video --ipc=host --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --device /dev/kfd --device=/dev/dri -v /YOUR/FOLDER:/root rocm/pytorch:rocm6.2_ubuntu22.04_py3.10_pytorch_release_2.3.0
    

为了检查你的硬件并确保系统识别你的 GPU,请运行:

! rocm-smi --showproductname

你的输出应该如下所示:

================= ROCm System Management Interface ================
========================= Product Info ============================
GPU[0] : Card series: Instinct MI210
GPU[0] : Card model: 0x0c34
GPU[0] : Card vendor: Advanced Micro Devices, Inc. [AMD/ATI]
GPU[0] : Card SKU: D67301
===================================================================
===================== End of ROCm SMI Log =========================

接下来,确保 PyTorch 检测到你的 GPU:

import torch
print(f"number of GPUs: {torch.cuda.device_count()}")
print([torch.cuda.get_device_name(i) for i in range(torch.cuda.device_count())])

你的输出应该如下所示:

number of GPUs: 1
['AMD Radeon Graphics']

要构建一个能够与文档聊天的聊天机器人,你将需要以下三个工具:

  • LangChain

  • 一个语言模型

  • 使用 Facebook AI 相似性搜索 (FAISS) 的 RAG

LangChain

LangChain 作为一个框架,用于创建由语言模型驱动的应用程序。它允许应用程序:

  • 通过将语言模型与上下文资源(如提示、示例或相关内容)链接来*拥抱上下文性*,以丰富其响应。

  • 依靠语言模型根据给定的上下文逻辑地推导答案,并决定采取适当的行动来*进行推理*。

要安装 LangChain,请运行 pip install langchain langchain-community

语言模型

在本博客中,我们使用Google Flan-T5-large作为我们的底层语言模型。

要安装我们的语言模型并与文档聊天,请运行以下代码:`pip install transformers sentence-transformers`。

带有 FAISS 的 RAG

尽管大规模语言模型(LLM)在各种领域都很智能,但它们的知识仅限于在训练完成时可供其使用的公共信息。如果我们希望模型考虑私有信息或训练后的数据,我们必须自己添加这些额外的信息。这个添加过程叫做RAG,而用于高效检索相关信息的工具是FAISS。

FAISS是一个用于高效相似性搜索和密集向量聚类的库。它广泛用于近邻搜索、相似性匹配以及在大型数据集中的其他相关操作。它帮助我们高效存储新的信息,并根据我们的查询检索最相关的信息块。

要安装FAISS,请运行`pip install faiss-cpu`。

Q&A 聊天机器人

首先,设置您的语言模型。您需要拥有一个Hugging Face API Token。

import os
from langchain import HuggingFaceHub, LLMChain
from langchain.prompts import PromptTemplateos.environ["HUGGINGFACEHUB_API_TOKEN"] = "your Huggingface API Token here"llm = HuggingFaceHub(repo_id="google/flan-t5-large",model_kwargs={'temperature':0.5,'max_length': 512})

一旦您有了您的模型,您可以通过 LangChain 的 LLMChain 来将各组件组合在一起。LLMChain 使用 PromptTemplate 来结构化用户输入,然后将这些输入发送给您的语言模型进行处理。这使得 LLMChain 成为生成连贯语言的有价值工具。

template = """Question: {question}
Answer: Let's think step by step."""prompt = PromptTemplate(template=template, input_variables=["question"])
llm_chain = LLMChain(prompt=prompt, llm=llm)

现在是有趣的部分——让我们向聊天机器人问几个问题:

输入:

question =  "What is the capital of Ecuador?"
llm_chain.run(question)

输出:

'Quito is the capital city of Ecuador. Quito is located in the north of the country. The answer: Quito.'

输入:

question =  "What is GTA? "
llm_chain.run(question)

输出:

'GTA is an abbreviation for Grand Theft Auto. GTA is a video game series. The answer: video game series.'

输入:

question =  "What are some key advantages of LoRA for LLM?"
llm_chain.run(question)

输出:

'LoRA is a centralized repository for all LLM degree work. The LLM degree program at the University of
Michigan was the first to use LoRA for their degree program. The University of Michigan School of Law
is the first law school in the United States to use LoRA for their degree program.'

最后一个问题的答案是错误的。这可能是因为模型的训练数据中没有包含关于 LoRA 的信息。在下一部分中,我们将通过应用 RAG 技术来解决这个问题。

Q&A 聊天机器人使用 RAG 技术

根据前一节的内容,模型错误地回答了我们关于LoRA技术的问题——这可能是因为在模型训练时没有包含该信息。要解决这个问题,你可以使用RAG技术将信息包含到你的模型中。

RAG工作分为两个阶段:

  1. 检索阶段:给定一个查询(例如,一个临床问题),模型在大型数据库中搜索相关文档或片段。

  2. 生成阶段:模型使用检索到的信息生成响应,确保输出基于输入数据,在我们的例子中将是一个PDF。

要看到这点的实际效果,你需要创建两个函数,一个用于处理我们的输入数据(关于LoRA的PDF论文),另一个用于构建我们的知识数据库。

from langchain.vectorstores import FAISS
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddingsdef process_text(text):# 使用LangChain的CharacterTextSplitter将文本分割成片段text_splitter = CharacterTextSplitter(separator="\n", chunk_size=256, chunk_overlap=64, length_function=len)chunks = text_splitter.split_text(text)# 将文本片段转换为嵌入以形成知识库embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-mpnet-base-v2')knowledgeBase = FAISS.from_texts(chunks, embeddings)return knowledgeBase

import PyPDF2
import requests
from io import BytesIO# 阅读PDF论文
pdf_url = "https://arxiv.org/pdf/2106.09685.pdf" 
response = requests.get(pdf_url)
pdf_file = BytesIO(response.content)
pdf_reader = PyPDF2.PdfReader(pdf_file)def get_vectorstore():# 从pdf_reader构建向量存储text = ""# 变量text将存储pdf文本for page in pdf_reader.pages:text += page.extract_text()# 创建知识库对象db = process_text(text)return dbdb = get_vectorstore()

现在,通过加载LangChain的Q&A链,搜索知识数据库中最相关的信息,并查看聊天机器人是否能提供更准确的答案来将所有内容结合在一起:

from langchain.chains.question_answering import load_qa_chain
# 加载Q&A链
chain = load_qa_chain(llm, chain_type="stuff", prompt=)query = "what are some key advantages of LoRA for LLM?"
# 搜索数据库中相关的信息
docs = db.similarity_search(query=query)# 运行我们的链
chain.run(input_documents=docs, question=query)

输出:

'LORA makes training more efficient and lowers the hardware barrier to entry by up to 3 times when
using adaptive optimizers since we do not need to calculate the gradients or cantly fewer GPUs and
avoid I/O bottlenecks. Another benefit is that we can switch between tasks while deployed at a much
lower cost by only swapping the LoRA weights as opposed to all the'

在为我们的模型提供了额外的信息后,更新的答案显然更加相关,通过`input_documents=docs`参数可以实现这一点。
我们建议测试不同的LLM作为基础模型,并尝试用于不同用例的各种LLMChain。我们还鼓励实验不同的处理方法,并细分输入文档以提高相似性搜索的相关性。 

http://www.zhongyajixie.com/news/41423.html

相关文章:

  • app制作平台大全海阳seo排名优化培训
  • ppt超链接网站怎么做视频营销
  • 苏州二建建筑集团有限公司seo关键词优化是什么意思
  • 做婚纱网站的目的做网站怎么优化
  • 网站建设顾问朝阳网络推广
  • 网站建设推广方法传统营销与网络营销的整合方法
  • 图片网站建设合肥百度推广排名优化
  • 网站有没有做网站地图怎么看sem推广优化
  • 化妆顺序步骤深圳百度网站排名优化
  • 如何用模板做网站视频seo网站优化方案
  • 怎么在网站添加关键词金融网站推广圳seo公司
  • 做蛋糕比较火的网站seo技术博客
  • 专业性行业网站有哪些网店运营的工作内容
  • 廊坊网站制作报价网络舆情监测专业
  • 人民政府网站的信息资源建设千峰培训出来好就业吗
  • 新冠疫苗接种查询seo概念的理解
  • 承德网站制作公司优选网十科技云计算培训费用多少钱
  • 孝感专业做网站公司网站优化seo教程
  • 台州黄岩网站建设深圳seo优化排名优化
  • 做网购内部优惠券网站网络营销的产品策略
  • 网站 攻击 刷流量怎么做网站教程视频
  • 廊坊企业做网站个人免费网上注册公司
  • 企业做网站算办公费用吗英文谷歌seo
  • 装潢公司网站源码php上海seo网站排名优化公司
  • 杭州便宜的手机网站建设云南seo网络优化师
  • 做图片网站seo 工具
  • 网站优化seo技术广告推销网站
  • java程序员做自己的网站搜索引擎是软件还是网站
  • 网站上添加百度地图导航长沙优化科技有限公司
  • 购物网站开发介绍关键词优化是怎样收费的